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The mathematical representation of heat and mass transfer in continuous chemical reactors is usually based on
an idealized one-dimensional model in which the controlling equations are those of heat conduction and diffusion [1, 2].
In some cases this model has to be supplemented with the equation of motion of the mixture of reagents and reaction
products in the reactor [3].

Even in the case of such a simple model of processes in reactors, a full investigation of the existence, uniqueness,
and stability of operational states involves considerable difficulties which have not yet been overcome. Hence, the us-
ual approach is to simplify the mathematical model of the reactor further by making certain assumptions regarding the
transport processes. In [1, 2] the authors considered ideal-displacement and complete-mixing models of reactors.
These represent the two extreme cases of a continuous reactor. In one case convective mass and heat transfer greatly
exceeds diffusive transfer (ideal displacement) and, in the other, diffusional transfer greatly exceeds convective trans-
fer (complete mixing). In [4—8] the steady states of a continuous adiabatic reactor were investigated on the assumption
that the diffusion coefficient and the thermal diffusivity were equal. With this assumption it was shown [8] that in the
case of an endothermic reaction there is always a unique steady state. In the case of an exothermic reaction the prob-
lem of the steady-state regime always has a solution, which, however, may not be unique. It was shown that there
could be several steady states, the number of which must be odd. These simplified models are applicable to a limited
range of reactors, but they still provide further information regarding the existence, uniqueness, and stability of the
operating regimes of continuous reactors and lead to some qualitative conclusions of a general nature.

Another important aspect of these investigations is that in several cases a real reactor can be represented by a
combination of simple models.

Below we propose and analyze a simplified model of a chemical reactor which is applicable to cases in which dif-
fusional mass transfer in the reactor can be neglected in comparison with convective transfer, while heat conduction is
so great that the temperature can be regarded as equal throughout the interior of the reactor. Thus, the proposed model
can be regarded as a combination of an ideal-displacement model for mass transfer and a complete-mixing model for
heat transfer. In this model, as in [3], we take into account the variation of the viscosity of the mixture of reagents and
reaction products with temperature.

This variation must be taken into consideration in view of the inverse relationship between the temperature and
hydraulic resistance of the reactor. The effect of change in the concentration of reagents in the flow on the stability of
the steady state of the reactor could probably be treated in a similar way. .

A wide field of application of this model could be, for instance, the description of processes in chemical reactors
with a fluidized catalyst. We know that the temperature at all the internal points of a fluidized-bed reactor is practi-
cally the same [9] owing to the intensive heat transfer by the catalyst particles, which move rapidly in longitudinal and
transverse directions. The transfer of reagents and reaction products in a suspended bed can be represented in the
general case by the equation of convective diffusion and often corresponds closely to the ideal-displacement case [10].

For the considered model, which we will call an ideal-displacement model with integral heat production, we deter-
mine the conditions of existence, number, and criteria of stability of the steady states. In this case, as distinct from
the ideal-displacement model considered in [3], purely oscillatory regimes are possible when the reactor characteris-
tics have particular values.

1. Reactor model. Steady states. The equations of heat and mass transfer in the considered reactor model can
be put in the form
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Here x is the spatial coordinate (0 = x =1); I is the length of the reactor; t is the time; £ is the degree of advance-
ment of the reaction; éyy, is the maximum degree of advancement of the reaction; m is the mass velocity of filtration of
the mixture of reagents and reaction products; p is the density of the mixture; T is the temperature in the reactor,
which depends only on the time; f(T) is the rate of the chemical reaction as a function of temperature, which can be de-
scribed in many cases by the Arrhenius law; h is the heat of the reaction; ¢ is the heat capacity of the mixture; ¢ is the
total heat capacity of the mixture and solid catalyst; @ is the coefficient of heat transfer to the side walls of the reactor;
V and S are the volume and side surface of the reactor; T, is the temperature of the surroundings; T,y is the tempera-
ture of the entering mixture.

We consider continuous reactors in which diffusional transfer of the reagents can be neglected in comparison
with convective transfer. In the reactor there is an irreversible first-order chemical reaction accompanied by the re-
lease (or absorption) of heat.

We assume that the heat transfer in the reactor is so rapid that temperature gradients inside the reactor can be
neglected. This assumption is responsible for the form of the conservation of heat equation (1.2), which expresses the
integral heat balance in the reactor. The second term in Eq. (1.2) takes into account the heat transfer between the reac-
tor and the surroundings and the difference in temperatures of the mixture entering the reactor and the mixture pres-
ent in the reactor. The third term takes into account the total heat release (absorption) in the reactor. The heat pro-
duction was treated in a similar way in [11] in an examination of a chemical reaction inside a single catalyst granule
with high thermal conductivity.

The proposed reactor model is intended for the representation of heat and mass transfer processes in continuous
reactors with a fixed bed or reactors with a fluidized bed of catalyst.

It should be noted that the mechanism bf equalization of the temperature in reactors with a fixed bed and reactors
with a fluidized bed is different.

In reactors with a fixed bed rapid heat transfer is due to the high thermal conductivity of the solid catalyst. In
reactors with a fluidized bed the temperature equalization is due primarily to heat transfer by solid particles moving

randomly inside the bed. In almost every case this ensures practically complete equalization of the temperature througt
out the reactor [9].

We assume that the filtration flow in the reactor is maintained by a pressure drop P and conforms to the Darcy
law. The equation of motion of the mixture can then be written in the form

_ kP
vl

Here v = v(T) is the kinematic viscosity of the mixture and k is the permeability.

(1.3)

We supplement Egs. (1.1) and (1.2) with a boundary condition in the form
£, =20 (1.4)

To determine the steady states of operation of the reactor we first integrate Eq. (1.1) with 8/8t = 0 and boundary
condition (1.4). We then obtain the steady-state distribution of the degree of advancement of the reaction ¢°(x) corres-
ponding to a steady temperature T° in the reactor

° T°
24?21*”“6_2%16 (1.5)

Substituting distribution (1.5) into Eq. (1.2) with d/dt = 0 we obtain an algebraic equation for determination of the
steady temperature T° '

mr_mzéym (1.6)
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The problem of the number of steady states for the considered reactor model reduces to an analysis of the num-
ber of solutions of Eq. (1.6), The steady values of the temperature correspond to the abscissas of the points of inter-
section of the curves of heat release (right~hand side of Eq. (1.6)) and heat removal (left-side of (1.6)).

Function f(T) is a function of the Arrhenius type. It is a monotonically increasing function and has a horizontal
asymptote and point of inflection. In addition, f(0) = 0. Function v(T) is monotonically increasing in the case of gas-
phase reactions and decreasing in the case of liquid-phase reactions. Proceeding from these general properties of func-
tion £ (T) and v(T) and using formulas (1.3) and (1.5) we can conclude that the heat-release curves have the form of
curves a and b in Fig. 1 (curve a is for an exothermic reaction; b is for an endothermic reaction). The heat-removal
curves (curves 1—3 in Fig. 1) pass through points Ty, 0) and have at least one intersection with the heat release curves.
Hence, steady states of the reactor always exist.

Fig. 1

In the case of an exothermic reaction at different temperatures T, there may be one (intersections of curves 1
and 3 with curve a) or several (intersections of curve 2 with curve a) steady states. In the case of an endothermic re-
action there is always a unique steady state (intersections of curves 1—3 with curve b). If could also be shown that the
presence of one or several steady states in the case of an exothermic reaction could be due to a change in the heat
transfer coefficient, geometry of the reactor, flow rate of the reagents, etc. If is very important to note the effect of
change in the viscosity of the mixture in the reactor with temperature. In particular, the usual assumption of constant
viscosity leads to a shift of the heat-release curve (see dashed curve in Fig. 1) and this may lead to an erroneous esti-
mate of the number of steady states.

2. Stability of steady state. To analyze the stability of the steady state of the reactor we use the small-perturba-
tion method. Putting functions T(t), &(x, t), m(t), and P(t) in the form q = q° + 0q, linearizing the system of equations
(1.1), (1.2), and using (1.5) and (1.6), we obtain the equations for small perturbations
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The case of simultaneous consideration of the thermomechanical effects associated with the variation of viscosity
with temperature and the nonadiabaticity of the reactor is excluded from the discussion here and henceforth. This
shortens the calculations, since then A; = const and T, = const. We note that the general case does not give rise to dif-
ficulties of a fundamental nature,
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We assume that the perturbations of the steady state are due to a change in the pressure drop, the degree of ad-
vancement of the reaction, and the temperature:

0 (t<0)

6P:{P0exp(—sot) (£>0, Regy>0) (2.4)

3 (2, 0) = m1 (), 8T (0) = m2
Here the function n4(x) and the constant 7, are arbitrary.
We find the solution of problem (2.1) ~(2.4) by the Laplace transformation method, introducing for oP(t), 0&(x, 1),

and 0T (t) the images from the formula
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From (2.1)—(2.4) after the Laplace transformation we obtain
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For the solution of problem (2.5) —(2.7) we first integrate Eq. (2.5) with condition (2.7), bearing in mind that 6T *
is independent of x. We obtain

88 = J (1 (2)) — 515/ (dua (8)) — 8T*J (dys (2))
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0

Substituting into this result the expression for 8T * from (2.6) we obtain an equation for 6¢* in the form
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Integrating both sides of this equation with respect to x from 0 to I, we find the value of the integral

Sléi* dx

0

Then, using (2.6) and (2.8) we obtain

Here
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Conversion from the Laplace images (2.9) to the originals is easy, since all the singularities of functions (2.9)
are poles. If all the poles of functions (2.9) lie to the left of the imaginary axis in the complex plane, the perturbations
of the steady state will decay with time and the regime will be stable. Otherwise the regime will be unstable. The
poles of functions (2.9) are situated at the point 8 = — s, and the zeros of the function ¥ (s) given by formula (2.10) (point
s = 0 is not a pole).

Thus, the analysis of the stability of the steady state reduces to an investigation of the position of the zeros of
function ¥ (s) on the complex plane. To solve the problem of the roots of equation ¥(s) = 0 which have a positive real
part we use the argument principle, according to which the number of zeros of the function § () within the region
bounded by the closed contour I on which ¥(s) # 0 is equal to the increment of the argument of function ¥ (s) on com-
pletion of the contour I, divided by 27.

As the contour I we take the contour I; + I',, composed of the right semicircle of radius R with center at the
origin of coordinates (I ;) and the segment of the ordinate axis between the points (0, R) and (0, —R). If the zeros of
function ¥ (s) are on the imaginary axis the contour I, will be composed of segments of the ordinate axis and the right
semicircles of small radius r with centers situated at the purely imaginary zeros of function ¥(s). We then proceed to
the limit where R —«, r — 0,

The analysis shows that the increment of the argument of function ¥(s) on I'y when R — = is independent of w and
is equal to 2w,

To caleculate the incrément of the argument of ¥(s) on the contour I, we first determine the values of w at which
function ¥(s) has purely imaginary zeros. It follows from (2.10) that function ¥ (s) has purely imaginary zeros when the
values of parameters wy, vy, and wy lie on a surface,w,, w,y, wy given by the equations

ir 91 2
o=~y by, o= 0y
(0<y <o) (2.13)

The surface (2.13) consists of an infinite number of sheets corresponding to the following regions of y:
2an<Cy<2n(n-+1) (n=0,1,2 ..)
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Fig. 2

As will be seen from what follows, only the sheet of the surface closest to the plane w, = 0 and corresponding to
the interval 0 < y < 27 is of interest. Henceforth for brevity we will call it the "first sheet.” When wy > 0 it lies in the
region w, > 0, and when wg < 0 it lies in the region w, < 0. The curves of intersection of the first sheet with the planes
wg = const are shown in Fig. 2 for the region wy < 0 (the region w; > 0, as formulas (2.11) and (2.12) show, has no phys-
ical sense). -

It can be shown by a method similar to that described in [3] that in the region w; > w, the increment of the argu-
ment of ¥(s) on the contour T, when R — « is 27, Hence, in the region w; > w, function ¥ (s) has two roots in the right
half-plane and the corresponding steady state is unstable. It can also be shown that in the region enclosed between the
first sheet of surface (2.13) and the plane w, = w, the increment A,arg¥(s) = —27 and the steady state is stable. In the
rest of the space wy, v,, w; the steady state is again unstable.
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Thus, the region of stability is enclosed between the first sheet of the surface (2.13) and the plane wy = wy, The
sections of the region of stability by the planes wy = const are unbounded when wy = 0 and bounded when w3 < 0 (see
Fig. 2). To illustrate this, the section of the stability region by the plane wy = —1 is hatched in Fig. 2. These sections
decrease with reduction of wg, and when wg = —3 the section contracts to a point with coordinates (—6,—6,—3).

We can also show that on the border of the stability region the state is neutrally stable and on the part of the
boundary which is formed by the first sheet of surface (2.13) the perturbations of the steady state have the nature of
neutral oscillations with nonzero frequency. It should be noted that not all the points (w,, w,, wy) have physical sense,
i.e., correspond to values of Ay, Ay, A3. Hence, we consider the stability conditions for the parameters A. Using form-
ulas (2.11) we can show that the steady state is unstable in the region

g > inf A (hy, Ay Aa® (hg, Ag)) (2.14)
and stable in the region
Ay < inf [As) (A, Aq)y Ag® (Re, Ayl (2.15)
Here
: M M43 . M Aa
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The positions of the stability and instability regions in the plane Xy, A4 for different values of ), are shown in Fig.
3. Here the instability regions lie above the solid curves (condition (2.14)), and the stability regions lie below the
dashed curves (condition (2,15)). It can be shown by means of formulas (1.6) and (2.12) that the instability condition
A3 > Ag (1) resulting from condition (2.14) corresponds to the case in which the angle of inclination of the heat removal
curve to the horizontal axis at the point of intersection of this curve with the heat-release curve (see Fig. 1) is greater
than the angle of inclination of the heat-release curve at this point. It follows from this that if there are three steady
states the middle one will always be unstable. The same conclusion can be reached from purely physical considera-
tions; it corresponds to the similar conclusion for the case of a complete-mixing reactor.
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Figure 3 shows that between the instability and stability regions there is a region which satisfies neither of con~
ditions (2.14) and (2.15). The question of the stability of the steady state for values of A belonging to this region can be

solved most easily by calculating the values of w from formulas (2.11) and then using the stability conditions for the
parameters w.

We note that purely oscillatory perturbations of the steady state of the reactor correspond to certain values of A,
As an example we cite the values 3y = 1, 3, = 9.87, 23 = 10.9, {5, 1.97, 9.35/, and {10, 0.987, 19.8f denoted by crosses
in Fig. 3.

Thus, we have shown that the steady states of operation of a chemical reactor which is mathematically repre-~
sented by Eqs. (1.1) and (1.2) and of the reactor model examined in [3] include stable, unstable, and neutral regimes.
Some of the neutral regimes in the reactor model with integral heat release are oscillatory. it seems likely that an
examination of a more general reactor model in which longitudinal mixing, reactions with complex kineties, and so on,
are considered will reveal steady states of all the types described above.
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