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The ma themat i ca l  r ep re sen t a t i on  of heat  and mass  t r a n s f e r  in continuous chemica l  r eac to rs  is usua l ly  based on 
an  ideal ized one -d imens iona l  model in which the cont ro l l ing  equations a re  those of heat  conduction and diffusion [1, 2]. 
In some cases  this model  has to be supplemented  with the equation of motion of the mix ture  of reagents  and reac t ion  
products  in the r e ac to r  [3]. 

Even in the case  of such a s imple  model  of p r o c e s s e s  in r e a c t o r s ,  a full inves t igat ion of the exis tence,  uniqueness ,  
and s tabi l i ty  of operat ional  s ta tes  involves cons ide rab le  difficult ies which have not yet been overcome.  Hence, the u s -  
ual  approach is to s impl i fy  the ma themat i ca l  model of the r e a c t o r  fu r the r  by making ce r t a in  assumpt ions  regard ing  the 
t r an spo r t  p r o c e s s e s .  In [1, 2] the authors  cons idered  idea l -d i sp lacement  and comple te -mix ing  models of r e ac to r s .  
These r e p r e s e n t  the two ex t reme cases  of a continuous r eac to r .  In one case convective mass  and heat  t r a n s f e r  grea t ly  
exceeds diffusive t r a n s f e r  (ideal displacement)  and, in the other,  diffusional t r a n s f e r  grea t ly  exceeds convective t r a n s -  
fer  (complete mixing).  In [4-8]  the s teady s ta tes  of a continuous adiabatic  r eac to r  were  invest igated on the assumpt ion  
that the diffusion coefficient and the t he rma l  diffusivi ty were  equal.  With this assumpt ion  it was shown [8] that in the 
case of an endothermic  reac t ion  there  is always a unique steady s ta te .  In the case of an exothermic  reac t ion  the p rob-  
lem of the s t eady- s t a t e  reg ime always has a solut ion,  which, however ,  may not be unique.  It was shown that there  
could be s eve ra l  s teady s ta tes ,  the number  of which mus t  be odd. These s impl i f ied  models are  applicable to a l imited 
range of r e ac to r s ,  but they s t i l l  provide fur ther  in format ion  regard ing  the ex is tence ,  un iqueness ,  and s tabi l i ty  of the 
opera t ing r eg imes  of continuous r eac to r s  and lead to some qual i ta t ive conclus ions  of a genera l  na ture .  

Another  impor tan t  aspect  of these invest igat ions  is that in s e ve r a l  cases  a r ea l  r e a c t o r  can be r ep resen ted  by a 
combinat ion  of s imple  models .  

Below we propose and analyze a s impl i f ied  model  of a chemical  r eac to r  which is appl icable  to cases  in which dif-  
fusional  mass  t r a n s f e r  in the r e ac to r  can be neglected in compar i son  with convective t r a n s f e r ,  while heat  conduction is 
so grea t  that the t empera tu re  can be rega rded  as equal throughout the in t e r io r  of the r eac to r .  Thus,  the proposed model 
can be regarded  as a combinat ion of an idea l -d i sp lacement  model for mass  t r a n s f e r  and a comple te -mix ing  model for 
heat  t r a n s f e r .  In this model,  as in [3], we take into account  the va r i a t i on  of the v i scos i ty  of the mixture  of reagents  and 
reac t ion  products  with t empe ra tu r e .  

This va r i a t ion  mus t  be taken into cons idera t ion  in  view of the inve r se  re la t ionship  between the t empera tu re  and 
hydraul ic  r e s i s t ance  of the r eac to r .  The effect of change in the concent ra t ion  of reagents  in the flow on the s tabi l i ty  of 
the s teady state of the r eac to r  could probably be t rea ted  in a s i m i l a r  way. 

A wide field of appl icat ion of this model could be,  for ins tance ,  the descr ip t ion  of p roces se s  in chemical  r eac to r s  
with a fluidized cata lys t .  We know that the t e m p e r a t u r e  at al l  the in t e rna l  points of a f luidized-bed reac to r  is p r ac t i -  
ca l ly  the same  [9] owing to the in tens ive  heat  t r a n s f e r  by the ca ta lys t  pa r t i c l e s ,  which move rapidly in longitudinal  and 
t r a n s v e r s e  d i r ec t ions .  The t r a n s f e r  of reagents  and reac t ion  products  in a suspended bed can  be represen ted  in the 
genera l  case  by the equation of convect ive diffusion and often cor responds  c lose ly  to the idea l -d i sp l acemen t  case [10]. 

For  the cons idered  model,  which we will  cal l  an idea l -d i sp l acemen t  model with in tegra l  heat  production,  we de te r -  
mine  the condit ions of exis tence ,  number ,  and c r i t e r i a  of s tabi l i ty  of the steady s ta tes .  In this  case ,  as d is t inc t  f rom 
the i dea l -d i sp l acemen t  model cons idered  in [3], pure ly  osc i l l a tory  r eg imes  a r e  poss ib le  when the r eac to r  c h a r a c t e r i s -  
t ics  have p a r t i c u l a r  va lues .  

1. Reactor  model .  Steady s ta tes .  
be put in the form 

The equations of heat  and mass  t r a n s f e r  in  the cons idered  reac to r  model can 

p _#z. + m at ~-~ - -  p/ (T) (~,~ - -  ~) = 0 (1.1/ 
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(1.2) 

Here  x is the spat ia l  coordinate  (0 -< x -</); I is the length of the r eac to r ;  t is the t ime;  ~ is the degree  of advance- 
ment  of the react ion;  ~m is the m a x i m u m  degree  of advancement  of the react ion;  m is the mass  ve loc i ty  of f i l t ra t ion  of 
the mix tu re  of reagents  and r eac t ion  products ;  p is the densi ty  of the mixture ;  T is the t e m p e r a t u r e  in the r e a c t o r ,  
which depends only on the t ime;  f (T)  is the ra te  of the chemica l  reac t ion  as a function of t e m p e r a t u r e ,  which can be de-  
s c r ibed  in many cases  by the Ar rhen ius  taw; h is the heat  of the react ion;  c 1 is the heat  capaci ty  of  the mix ture ;  e is the 
total  heat  capaci ty  of the mix tu re  and sol id  catalyst ;  ~ is the coeff ic ient  of heat  t r a n s f e r  to the s ide wal ls  of the r eac to r ;  
V and S a re  the vo lume and side su r face  of the r eac to r ;  T~ is the t e m p e r a t u r e  of the sur roundings ;  T'  0' is the t e m p e r a -  
ture  of the en te r ing  mix tu re .  

We cons ide r  continuous r e a c t o r s  in which diffusional  t r a n s f e r  of the reagents  can be neglec ted  in compa r i s on  
with convec t ive  t r a n s f e r .  In the r e a c t o r  the re  is an i r r e v e r s i b l e  f i r s t - o r d e r  chemica l  reac t ion  accompanied  by the r e -  
l ease  (or absorption) of heat.  

We a s s u m e  that the hea t  t r a n s f e r  in the r e a c t o r  is so rapid that t e m p e r a t u r e  gradients  inside the r e a c t o r  can be 
neglec ted .  This  assumpt ion  is r e spons ib le  fo r  the fo rm of the conse rva t ion  of heat  equation (1.2), which e x p r e s s e s  the 
in tegra l  heat  balance in the r e a c t o r .  The second t e r m  in Eq. (1.2) takes  into account  the heat  t r a n s f e r  be tween the r e a c -  
t o r  and the sur roundings  and the d i f fe rence  in t e m p e r a t u r e s  of the mix tu re  en ter ing  the r e a c t o r  and the mix tu re  p r e s -  
ent in the r eac to r~  The third t e r m  takes into account the total  hea t  r e l e a s e  (absorption) in the r e a c t o r .  The heat  p r o -  
duction was t r ea ted  in a s i m i l a r  way in [11] in an examinat ion  of  a c h e m i c a l  reac t ion  inside a s ingle ca ta lys t  granule  
with high t h e r m a l  conductivi ty.  

The p roposed  r e a c t o r  model  is intended for  the r e p r e s e n t a t i o n  of heat  and mass  t r a n s f e r  p r o c e s s e s  in continuous 
r e a c t o r s  with a fixed bed or  r e a c t o r s  with a f luidized bed of catalysto 

It should be noted that the m e c h a n i s m  of equal iza t ion  of the t e m p e r a t u r e  in r e a c t o r s  with a fixed bed and r e a c t o r s  
with a f luidized bed is d i f ferent .  

In r e a c t o r s  with a fixed bed rap id  hea t  t r a n s f e r  is due to the high t he rm a l  conductivi ty of the sol id ca ta lys t .  In 
r e a c t o r s  with a f iuidized bed the t e m p e r a t u r e  equal iza t ion  is due p r i m a r i l y  to heat  t r a n s f e r  by sol id  p a r t i c l e s  moving 
randomly  inside the bed. In a lmos t  eve ry  case  this en su re s  p r ac t i c a l l y  comple te  equal iza t ion  o f  the t e m p e r a t u r e  througl 
out the r e a c t o r  [9]. 

We a s s u m e  that the f i l t r a t ion  flow in the r e a c t o r  is maintained by a p r e s s u r e  drop P and conforms  to the Darcy  
law. The equation of motion of the mix ture  can then be wr i t t en  in the fo rm 

kP 
vl 

Here  z, = p (T) is the k inemat ic  v i s c o s i t y  of the mix ture  and k is the p e r m e a b i l i t y .  

(1.3) 

We supplement  Eqs.  (1.1) and (1.2) with a boundary condit ion in the f o r m  

(0, t) = 0 (1.4) 

To d e t e r m i n e  the s teady s ta tes  of opera t ion  of the r e a c t o r  we f i r s t  in tegra te  Eq. (1.1) with a / a t  = 0 and boundary 
condit ion (1.4). We then obtain the s t e ady - s t a t e  d is t r ibut ion  of  the d e g r e e  of advancement  of  the reac t ion  ~~ c o r r e s -  
ponding to a s teady t e m p e r a t u r e  T ~ in the r e a c t o r  

~~ = t - - e x p  - - - - x  (1.5) ~ mQ 

Substi tut ing d is t r ibu t ion  (1.5) into Eq.  (1.2) with d /d t  = 0 we obtain an a lgeb ra i c  equat ion for  de t e rmina t ion  of the 
s teady t e m p e r a t u r e  T ~ 

h 
~I(T ~  To) : - ~  ~~ (1.6) 
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The p rob l em of the n u m b e r  of s teady s ta tes  for the cons idered  reac to r  model reduces to an ana lys i s  of the num-  
b e r  of solut ions of Eq. (1.6). The s teady values of the t empera tu re  cor respond  to the absc i s sas  of the points of i n t e r -  
sec t ion  of the curves  of heat  r e l ea se  ( r ight-hand side of Eq. (1.6)) and heat  removal  ( left-side of (1.6)). 

Func t i on f (T )  is a function of the Ar rhen ius  type. It is a monotonical ly  i nc reas ing  function and has a hor izonta l  
asymptote  and point  of inf lect ion.  In addit ion,  f(0) = 0. Function u(T) is monotonical ly  i nc r ea s ing  in the case  of gas -  
phase reac t ions  and dec reas ing  in the case of l iquid-phase  reac t ions .  Proceeding  f rom these genera l  p roper t i es  of func- 
t i o n f ( T )  and u(T) and us ing  formulas  (1.3) and (1.5) we can conclude that the h e a t - r e l e a s e  curves  have the form of 
curves  a and b in Fig. 1 (curve a is for an exothermic  react ion;  b is for an endothermic  react ion) .  The h e a t - r e m o v a l  
curves  (curves 1 - 3  in  Fig. 1) pass  through points  T 0, 0) and have at least  one in t e r sec t ion  with the heat  r e lease  cu rves .  
Hence,  s teady s ta tes  of the r e a c t o r  always exis t .  

Fig. 1 

In the case of an exothermic  reac t ion  at d i f ferent  t e m p e r a t u r e s  T0, there  may be one ( in tersec t ions  of curves  1 
and 3 with curve  a) or  seve ra l  ( in tersect ions  of curve  2 with curve a) s teady s ta tes .  In the case of an endothermic  r e -  
act ion there  is always a unique s teady state ( in tersec t ions  of curves  1 - 3  with curve b). It could also be shown that the 
p r e sence  of one o r  s eve ra l  steady s ta tes  in the case of an exothermic  reac t ion  could be due to a change in the heat  
t r a n s f e r  coefficient,  geometry  of the r eac to r ,  flow rate  of the reagents ,  etc.  It is very  impor tant  to note the effect of 
change in the v i scos i ty  of the mix ture  in  the r eac to r  with t empera tu re .  In pa r t i cu l a r ,  the usua l  assumpt ion  of constant  
v i scos i ty  leads to a shift  of the h e a t - r e l e a s e  curve (see dashed curve in Fig. 1) and this may lead to an e r roneous  e s t i -  
mate  of the number  of s teady s ta tes .  

2. Stabil i ty of s teady s tate .  To analyze  the s tabi l i ty  of the s teady state of the r e a c t o r  we use  the s m a l l - p e r t u r b a -  
t ion method. Putt ing functions T(t), Ux,  t), m(t), and P(t) in the form q = q~ + 6q, l inea r iz ing  the sys t em of equations 
(1.1), (1.2), and us ing  (1.5) and (1.6), we obtain the equations for sma l l  pe r tu rba t ions  

08~ 
t- dn6~ + d~ ~ + d~3 (x) 67 + d~4 (x) 6P = 0 (2.1) ot 

l 
dST f -d~ : + d~16T + d2~ 6~dx + d~,~6P = 0 (2.2) 

o 

6~ (0, t) = 0 (2.3) 

Here 

dn = J (T~ dia (x) = - -  (~m - -  ~~ [ (T ~ d-~ In Iv (T ~ f (T~ 

,n ~ __ ~r / (~~ _ h / ( T  ~ 
dl~ = --~-, dl4 (x) = ( ~  ---s'r- , d~z pcl 

17~ ~ 
d21 = ~,i 7 {1 - -  (T ~ - -  To) ~To In [v (T ~ / (T~ 

d2~ = Xi (T ~ - -  To) m~ 
t iP~  

The case of s imul taneous  cons idera t ion  of the the rmomechan ica l  effects assoc ia ted  with the va r i a t ion  of v i scos i ty  
with t empe ra tu r e  and the nonadiabat ic i ty  of the r e a c t o r  is excluded f rom the d i scuss ion  here  and hencefor th .  This 
shor tens  the ca lcula t ions ,  s ince then ?'1 = const  and T O = const .  We note that the genera l  case does not give r i s e  to dif-  
f icul t ies  of a fundamental  na ture .  
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We as sume  that the pe r tu rba t ions  of the steady state a re  due to a change in  the p r e s s u r e  drop, the degree of ad- 

vancement  of the reac t ion ,  and the t empera tu re :  

o (t < o) 
6P ~Poexp(--zot) (t>O, Redo>O) (2.4) 

6 ~  (~ ,  O) = n~ (x) ,  ~ :r  (o) = n~ 

Here the function ,] l(x) and the constant  ri 2 a re  a r b i t r a r y .  

We find the solut ion of p rob lem (2.1)-(2.4)  by the Laplace t r ans fo rma t ion  method, in t roducing for 6P(t), 6~(x, t), 
and 6T(t) the images f rom the formula  

6q* (~) = ~ exp ( - -  ~t) 6qdt 
o 

F r o m  (2 .1) -  (2.4) af ter  the Laplace t r ans fo rma t ion  we obtain 

dS~* ( a + d l l ) b ~ *  @dl~-3~z @dl3(x )ST*- t -d l~ (x )  - - q l ( x ) = O  (2.5) 
l 

+ + I + = o 
o 

6~* (0, (:) = 0 (2.7) 

For  the solut ion of p rob l em (2.5)-(2.7)  we f i r s t  in tegra te  Eq. (2.5) with condition (2.7), bea r ing  in mind that 6T* 
is independent of x~ We obtain 

= J Oh (x)) - -  z ~ z o  J (dl~ (xJ) - -  6T*J  (d13 (x)) 6~* 
:c 

0 

Substi tut ing into this r e su l t  the express ion  for ST* f rom (2.6) we obtain an equation for 5~ * in the form 

! 

o 

dlad~l ~ d146 Po 

(2.8) 

In tegra t ing  both sides of this equation with respec t  to x f rom 0 to l ,  we find the value of the in tegra l  

f 6~* dx 
o 

Then,  us ing (2.6) and (2.8) we obtain 

6~* = J (rh) - -  ~.~2J(s) exp - -  1 - -  exp - -  -F  s (.~ + .so) $ (s) (2.9) 

Here 

l 

o 

~m d ~ 6fl 
--(s-~-So) T h ~ d - f z l n v ] - t - ( s @ ~ , l  ) , s =  m--- z 

(s)  = s ~ + r - -  ~ol + c% 1 - ~ - _ _ _ 2  ~ 
8 (2.].0) 

0 1  ~ - -  ~i/~2,  tO2 : - - )~22)vS e ?'2, (03 = )~1 - ~  ~2 - - ) ~ a  ( l  - -  e -~2) 

laS cl p/(T ~ ) I h~m d 
~ ' l = ~ - t - ~ ' - ,  )~2-- m o , ~ , ~ = - ~ - d = f i  - l n v /  

(2.11) 

(2.12) 
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C o n v e r s i o n  f r o m  the L a p l a c e  i m a g e s  (2~ to the  o r i g i n a l s  is  e a s y ,  s i n c e  a l l  the  s i n g u l a r i t i e s  of  funct ions  (2.9) 
a r e  p o l e s .  I f  a l l  the  p o l e s  of  func t ions  (2.9) l ie  to the le f t  of  the i m a g i n a r y  ax i s  in the  c o m p l e x  p lane ,  the p e r t u r b a t i o n s  
o f  the  s t e a d y  s t a t e  w i l l  d e c a y  with  t i m e  and the  r e g i m e  wi l l  be s t a b l e .  O t h e r w i s e  the  r e g i m e  wi l l  be  uns t ab l e .  The  
p o l e s  of  func t ions  (2.9) a r e  s i t u a t e d  at  the poin t  s = - s o and the z e r o s  of  the  func t ion  ~ (s) g iven  by f o r m u l a  (2.10) (point 
s =  0 i s  not  a p o l e ) .  

Thus ,  the a n a l y s i s  of the s t a b i l i t y  o f  the s t e a d y  s t a t e  r e d u c e s  to an  i n v e s t i g a t i o n  of  the  p o s i t i o n  of  the  z e r o s  of  
func t ion  ~ (s) on the  c o m p l e x  p l ane .  To s o l v e  the p r o b l e m  of  the roo t s  of  e q u a t i o n  r = 0 which  h a v e  a p o s i t i v e  r e a l  
p a r t  we u s e  the a r g u m e n t  p r i n c i p l e ,  a c c o r d i n g  to which  the n u m b e r  of  z e r o s  o f  the  func t ion  ~: (s) wi th in  the  r e g i o n  

bounded  by  the  c l o s e d  c o n t o u r  I on which  ~(s) ~ 0 i s  equa l  to the i n c r e m e n t  of  the  a r g u m e n t  of  func t ion  r (s) on c o m -  

p l e t i o n  of  the  c o n t o u r  F,  d iv ided  by 2~. 

As the c o n t o u r  r we  take  the  c o n t o u r  I 1 § F2,  c o m p o s e d  of the r igh t  s e m i c i r c l e  of  r a d i u s  R with  c e n t e r  at the  
o r i g i n  of  c o o r d i n a t e s  (I1) and the s e g m e n t  of the o r d i n a t e  ax i s  b e t w e e n  the po in t s  (0, R) and (0, - R ) .  If the z e r o s  of  
func t ion  ~ (s) a r e  on the i m a g i n a r y  ax i s  the  c o n t o u r  r 2 w i l l  be  c o m p o s e d  of s e g m e n t s  o f  the  o r d i n a t e  ax i s  and the  r i gh t  
s e m i c i r c l e s  of s m a l l  r ad ius  r wi th  c e n t e r s  s i t u a t e d  a t  the p u r e l y  i m a g i n a r y  z e r o s  o f  funct ion  r  We then  p r o c e e d  to 
the l i m i t  w h e r e  R ~ ~ ,  r ~ 0. 

The  a n a l y s i s  shows  that  the i n c r e m e n t  of  the a r g u m e n t  of  func t ion  ~(s) on F 1 when  R ~ oo is i ndependen t  of  co and 

i s  e q u a l  to 2~. 

To c a l c u l a t e  the  i n c r e m e n t  of  the  a r g u m e n t  of  ~(s) on the con tou r  1- 2 we f i r s t  d e t e r m i n e  the  v a l u e s  of ~ a t  wh ich  
func t ion  ~(s) has  p u r e l y  i m a g i n a r y  z e r o s .  It fo l lows  f r o m  (2.10) that  funct ion  ~ (s) has  p u r e l y  i m a g i n a r y  z e r o s  when  the 

v a l u e s  o f  p a r a m e t e r s  091, ~2, and w 3 l ie  on a su r face ,~o l ,  (o2, co 3 g iven  by the  e q u a t i o n s  

y sin y y~ 
(01~_y2~_o)~  i - - co sy  ' (0~ ~(03 i - - cosy  

( 0 ~ . y ~  oo) (2.13) 

The  s u r f a c e  (2.13) c o n s i s t s  of  an inf in i te  n u m b e r  of  s h e e t s  c o r r e s p o n d i n g  to the  fo l lowing  r e g i o n s  of  y: 

2~n~y~2n(n~-t) (n=0.  i, 2 .. . .  ) 

ori 

%_ 
�9 -~O -10 

/g 

l 

Fig .  2 

As w i l l  be  s e e n  f r o m  what  fo l lows ,  on ly  the  s h e e t  o f  the  s u r f a c e  c l o s e s t  to the  p lane  w 2 = 0 and c o r r e s p o n d i n g  to 
the i n t e r v a l  0 -< y < 2 r  is  of  i n t e r e s t .  H e n c e f o r t h  fo r  b r e v i t y  we  wi l l  c a l l  i t  the  " f i r s t  s h e e t . "  When w 3 > 0 i t  l i e s  in the 
r e g i o n  w 2 > 0, and when  o93 < 0 it l i e s  in the  r e g i o n  w 2 < 0. The  c u r v e s  o f  i n t e r s e c t i o n  of  the f i r s t  s h e e t  wi th  the  p l a n e s  
093 = c o n s t  a r e  shown in F ig .  2 f o r  the  r e g i o n  w I < 0 (the r e g i o n  w I > 0, a s  f o r m u l a s  (2.11) and (2.12) show,  has  no p h y s -  

i c a l  s e n s e ) .  

It  can  be  shown by a m e t h o d  s i m i l a r  to that  d e s c r i b e d  in [3] that  in the r e g i o n  w 1 > co 2 the  i n c r e m e n t  o f  the a r g u -  
m e n t  of  ~(s) on the  c o n t o u r  r 2 when  R ~ ~ is  2~. H e n c e ,  in the r e g i o n  091 > 092 func t ion  ~ (s) has  two roo t s  in the  r igh t  
h a l f - p l a n e  and the  c o r r e s p o n d i n g  s t e a d y  s t a t e  i s  u n s t a b l e .  It  can  a l s o  be  shown tha t  in the r e g i o n  e n c l o s e d  b e t w e e n  the 
f i r s t  s h e e t  of  s u r f a c e  (2.13) and the  p l ane  ~1 = ~ the  i n c r e m e n t  A2arg~(s)  = - 2 r  and the  s t e a d y  s t a t e  is s t a b l e .  In the 
r e s t  o f  the  s p a c e  091, ~2, r the s t e a d y  s t a t e  is a g a i n  u n s t a b l e .  
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Thus,  the region of s tab i l i ty  is enclosed between the f i r s t  sheet  of the sur face  (2.13) and the plane co2 = c~ The 
sect ions  of the region of s tabi l i ty  by the planes w 3 = const  are  unbounded when co3 >- 0 and bounded when co3 < 0 (see 
Fig. 2). To i l lus t ra te  this ,  the sec t ion  of the s tabi l i ty  region by the plane ~% = - 1  is hatched in Fig. 2o These  sect ions 
decrease  with reduct ion of co3, and when co3 = - 3  the sect ion contrac ts  to a point with coordinates  ( - 6 ,  - 6 ,  - 3 ) .  

We can also show that on the bo rde r  of the s tabi l i ty  region the state is neu t ra l ly  stable and on the pa r t  of the 
boundary which is formed by the f i r s t  sheet  of sur face  (2.13) the per tu rba t ions  of the steady state  have the na ture  of 
neu t ra l  osc i l la t ions  with nonzero frequency.  It should be noted that not all  the points (cot, co2, w~) have physica l  s ense ,  
i .e . ,  cor respond  to va lues  of X 1, ~2, )t3- Hence, we cons ide r  the s tabi l i ty  condit ions for the p a r a m e t e r s  ~. Using fo rm-  
ulas  (2.11) we can show that the steady state is uns table  in the region 

X3 ~ inf [~,a (~) (X~, ~), L3(~) ()~, %1)] 

and s table  in the region 

Here 

ka < inf [L3 (t) (~2, ~,~), %~(~)(k2, ~,~)] 

3. 

(2.14) 

(2.15) 

kl exp ~2, ks(~ ) = M § ~2 _c 3 ~(3) -- ~4 + L~ 
%a(t) = -~ 1 -- exp (-- E2) ' 1 -- exp (-- L2) 

The posi t ions of the s tab i l i ty  and ins tabi l i ty  regions in the plane X2, X3 for  different  values of ;h a re  shown in Fig. 
Here the ins tab i l i ty  regions lie above the solid curves  (condition (2.14)), and the s tabi l i ty  regions lie below the 

dashed curves  (condition (2o15)). It can be shown by means  of formulas  (1.6) and (2.12) that the ins tab i l i ty  condit ion 
X3 > X3 (1) r e su l t ing  f rom condit ion (2.14) cor responds  to the case in which the angle of inc l ina t ion  of the heat  r emova l  
curve to the hor izonta l  axis at the point  of in t e r sec t ion  of this curve with the h e a t - r e l e a s e  curve (see Fig. 1) is g r e a t e r  
than the angle of inc l ina t ion  of the h e a t - r e l e a s e  curve at this point.  It follows f rom this that if there  are  three  steady 
s tates  the middle  one wil l  always be uns tab le .  The same conclusion can be reached f rom pure ly  physical  c o n s i d e r a -  
t ions; it cor responds  to the s i m i l a r  conclus ion for the case of a comple te -mix ing  r eac to r .  

,o i 
301 

20 l~ 

1ol 

~ L I  1 1 1 1 1 1  1 
t7.1 t~4 115t~5 ~g 10 2 3 4 

Fig. 3 

Figure  3 shows that between the ins tab i l i ty  and s tab i l i ty  regions there  is a region which sa t i s f ies  ne i the r  of con-  
dit ions (2.14) and (2.15). The quest ion of the s tabi l i ty  of the steady state  for values  of ~ belonging to this region can be 
solved most  eas i ly  by ca lcula t ing  the values  of co from formulas  (2.11) and then us ing the s tabi l i ty  condit ions for the 
p a r a m e t e r s  ~.  

We note that pure ly  osc i l l a to ry  per tu rba t ions  of the s teady state of the r e a c t o r  cor respond  to ce r t a in  values  of ~. 
As an example we cite the values  ~'1 = 1, ~2 = 9.87, ~3 = 10.9, [5, 1.97, 9.35~, and ~10, 0~ 19.8} denoted by c r o s s e s  
in Fig.  3. 

Thus,  we have shown that the steady s ta tes  of operat ion of a chemical  r eac to r  which is mathemat ica l ly  r e p r e -  
sented by Eqso (1.1) and (1.2) and of the r e ac to r  model examined in [3] include s table ,  uns table ,  and neut ra l  r e g i m e s .  
Some of the neu t ra l  r eg imes  in the r eac to r  model with in tegra l  heat r e lease  a re  osc i l l a tory .  It seems l ikely that an 
examinat ion  of a more  genera l  r eac to r  model in which longitudinal  mixing,  reac t ions  with complex k ine t ics ,  and so on, 
a re  cons idered  will  r evea l  steady s ta tes  of al l  the types descr ibed  above.  
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